
System for designing and creating computer programs
using finite state machines

December 29, 2014
Abstract:

The methods commonly used to develop computer software are very difficult, time consuming
and error prone. Many software projects are canceled due to cost and time overruns. It is
common for projects to fail to deliver all of the anticipated benefits.
What is disclosed is a new paradigm which provides a simple and straightforward method for
software development which is much faster and easier to execute. This gain is achieved by
using Finite State Machines together with Publish and Subscribe communications utilities. This
method can be used in virtually every type of transaction processing environment. It is a good
solution for the “Internet of Things”.

Keywords:
• Computer Programming
• Software Development
• Object Oriented Programming
• Transaction Processing
• Finite State Machine
• Publish and Subscribe
• Internet of Things
• Database
• Eclipse Rich Client Plugin RCP

Introduction:

The problem being addressed is to devise a method to create robust computer software
programs rapidly, reliably, and at low cost. Further, there is a need to maintain the software
through its lifetime by having the ability to repair any defects that are reported, and to make any
required changes to the system functionality in a rapid and effective manner. Late-arriving
specification changes are a reality in every project so they must not be disruptive to the progress
already achieved.

The existing solutions involve Relational Database Management Systems as well as Object
Oriented Programming methods and techniques. A leading authority has written his opinion that
it takes ten years of practice for a developer to become proficient at Object Oriented
Programming. This is too long! The current software development process is too demanding,
and too stressful. Current trends favor the use of large Enterprise Resource Planning systems
that are very difficult to customize to meet individual needs. The industry often speaks of
“managing expectations”, and seldom of “exceeding expectations”. This ensures that every
client suffers disappointment.

What is disclosed is a design method in which the steps required to create reliable and flexible
software are easy to learn and easy to execute. The new system is “transparent” in the sense

that stakeholders who are not trained in the computer arts can participate in a very fundamental
way to specify, define and create their desired software solution. We anticipate that our
invention will have a major positive impact on the software industry.

Description:

What is disclosed is a software design strategy that employs methods and concepts that are very
old and well established, including:

• Publish and Subscribe of XML Records having prescribed data fields
• TCP/IP networking using socket pairs
• Finite State Machines that are defined by State Tables {State – Events – Transition –

Next State}
• Rich Client Plugins that contain a limited amount of functionality and can communicate

only by Publish and Subscribe of DataStream records. Rich Client Plugins can employ
any operating system and any programming language. Rich Client Plugins may have a
Graphical User Interface (GUI), or not. Rich Client Plugins can run in any type of
computer hardware such as a desktop PC, server, laptop, tablet, cell phone, embedded
microprocessor, etc.

• Local databases are contained within the Rich Client Plugins and are never shared with
other Rich Client Plugins.

Hollerith Punch cards were used for the 1890 US Census. In the 1950's, data was stored on
80-column punch cards. Our solution returns to that data encapsulation concept, by using XML
records with prescribed fields. These are called DataStream records. They are communicated
using Publish and Subscribe methods. Every DataStream record that is published is recorded in
a Write Once Read Many store, and there will normally be more than one Write Once Read
Many store located far apart for safety and security. Published DataStream records are indelible
and cannot be corrected or altered – similar to punch cards.

Networking of the DataStream records is provided by a Broker and an Archivist.
A Librarian is made available to support queries of old DataStream records in the Archive.

This invention is superior to current methods because the required computing functionality can
be created and deployed much faster. Late-arriving change orders are not disruptive because
they are accommodated by altering one or more Rich Client Plugin and adding new fields to the
DataStream records. The operation of every Rich Client Plugin is defined and specified by a
Finite State Machine state table that uses this format:

 {State – Events – Transition – Next State}

This type of specification document is capable of capturing the requirements in every detail.
Because it does not require training in any computer language, all stakeholders can participate
in the design process. Further, it is now possible to plan at a high level and to debate the best
solution strategy. Design competitions become practical because competing Rich Client Plugins
can be created inexpensively.

Steps to Create the Invention:
Using our method, the first step in approaching any new computing project is to design the
XML DataStream records and their data fields. These fields must record all that is “of interest”

in the application.

Then the required Rich Client Plugins should be listed, and defined using a separate Finite State
Machine table to govern each Rich Client Plugin. The test conditions are specified, and test
DataStream records are always provided. Now the Rich Client Plugin can be assigned to a
developer. Each Rich Client Plugin should contain a small amount of computer code. This
small size promotes good developer comprehension and makes errors less likely. When
completed, each Rich Client Plugin can be tested and accepted as complete.

Several developers can work on multiple Rich Client Plugins in parallel if required, in order to
speed up the work. These developers can be widely separated geographically and need never
meet or converse with each other. The developers are engaged in tactics, not strategy. The
strategy was debated and specified by the authors of the State Tables. This is new and
refreshing.

The required communications infrastructure components include the Broker, Archivist, and
Librarian.

The Broker is a simple message Router, which transmits DataStream records to each Subscriber
that has registered an interest in a type of DataStream record, and it does this in near-real-time.

The Archivist is a Write Once Read Many storage service which saves every DataStream
record indelibly, forever. This can be of evidence quality, and serve as highly reliable testimony
for forensic analysis.

The Librarian is a Query service which returns DataStream records that qualify for each
particular query request.

The Rich Client Plugins are examples of generic Logic Boxes (LB) or “Objects” (per Object
Oriented Programming) and they are permitted to communicate by a single method alone:
DataStream records via Publish and Subscribe to the Broker. A Rich Client Plugin can employ
any operating system and any language and any database – these are freely chosen by the
developer.

Business Intelligence functions can be performed by the use of commercial Business
Intelligence Dashboard products, and these are fed data via a Rich Client Plugin that performs
the extract, translate and load services required by the dashboard.

Reports and analysis can be done anytime, even using methods that were never contemplated at
the time of the original software design.

Example:

Secure door entry system. The DataStream records and their fields are shown in Figure 2.
Rich Client Plugins would be defined to interface with the door locks and the payroll
department.
In operation, door Rich Client Plugin would publish the arrival of an employee RFID card
Payroll Rich Client Plugin would subscribe to all RFID card messages

Payroll would check its internal database to see if entry is allowed and publish the result
Door Rich Client Plugin would subscribe to the result DataStream record. If allowed, it would
unlock the door.

References:

US 395781 - Punch card counting machine, Herman Hollerith, 1887.
Modeling Software with Finite State Machines: A Practical Approach ISBN-10: 0849380863

Modeling and Evaluation of High-performance Publish-Subscribe System - Computational
Intelligence and Design, 2008. ISCID '08. Pages 457 - 460

Diagrams:

FIGURE 3

FLOWCHART OF PROJECT MANAGEMENT

